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Abstract

Vibration control of structures is confronted with many problems like the proper selection of modelling
methods, controllability and observability of models, model size and model reduction methods. In this
paper a practical procedure is proposed to overcome technical problems of structure control due to a large
model size. Firstly, an accurate numerical model is derived by using the finite element method. This model
is verified by modal analysis experiments. Secondly, a new model reduction procedure is proposed to reduce
considerably the full order model. This reduction makes the reduced order model controllable and
observable. In a further step, a controller is designed based on the verified reduced order model. Finally, a
real-time control system is set up. The controlled and uncontrolled impulse responses at the free tip of the
cantilever beam with active constrained layer damping treatments are compared both in time domain and
frequency domain. The results clearly show the efficiency of the proposed procedure. The procedure
proposed in this paper can be extended towards more complex structures.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Conventional passive constrained layer damping (PCLD) is obtained by putting a layer of
viscoelastic material (VEM) between the base structure and a constraining layer. The passive
damping energy is generated mainly by shear stresses in the viscoelastic layer. PCLD treatments
[1–3] have been applied to machines and structures widely over the last century because of their
reliability and simplicity. PCLD treatments can reduce vibrations effectively at high-frequency
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ranges, but they are not so effective at low-frequency ranges. Furthermore, they are not intelligent
and once the damping treatments are installed, they cannot be adjusted and cannot adapt
themselves to changeable environments. Structure damping can also be obtained in an active way
by fixing a piezoelectric (PZT) layer directly on the base structure. Extension and compression of
the PZT layer can be controlled by an electrical voltage signal. Recently, active damping has
received increased attention in the aeronautic and astronautic industries, owing to the significant
and adjustable damping it can offer. Yet in spite of productive research into active damping
treatments [4–6], many limitations remain. Safety and reliability cannot be guaranteed. Active
damping is effective in the low-frequency range, but is difficult to implement at high-frequency
ranges. Hybrid damping is a combination of PCLD with active damping treatments. To obtain
hybrid damping, active constrained layer damping (ACLD) treatments [7,8] in which the
constraining layer of PCLD treatments is replaced by a PZT layer have been proposed. Hybrid
damping hence combines the efficiency of PCLD in the high-frequency range with the efficiency of
active damping in the low-frequency range.
The main difficulties with hybrid damping are that the active controller is very sensitive to

system changes and the VEM properties change with frequency and temperature. Hence in order
to design a reasonable, sufficiently reliable and robust control system, both the VEM and the host
structure must be well modelled.
Many models have been used to deal with VEM. The simplest model is the complex modulus

model E� ¼ ðE0 þ iE00Þ with constant real E0 and constant imaginary E00 values. Rongong and
Wright [9], Baz [10], Shen [11], Baz and Ro [12] used this model to study ACLD. The advantage of
the complex modulus model is its simplicity; the drawback is that it can only describe the
dynamical properties correctly when the applied load is harmonic [13]. Another popular model for
VEM is the iterative modal strain energy (MSE) model. Veley and Rao [14] used this model. The
advantage of the MSE model is that researchers need only to solve the real eigenvalue problem
instead of the complex eigenvalue problem. However, this will result in unacceptable errors for the
calculated damping factors if the natural frequencies are not well separated [15]. The fractional
derivative (FD) model is another model adopted to study VEM. The FD model is exact enough to
describe the dynamic properties of VEM, but it results in high-order equations and is not
convenient to calculate the response in the time domain [13]. Another model proposed to study
VEM is the anelastic displacement fields (ADF) model [16]. The ADF model introduces extra
degrees of freedom (d.o.f.’s) and results in a first order linear system. Lesieutre and Lee [17] used
the ADF model to study an ACLD system. Similar to ADF, the Golla–Hughes–McTavish
(GHM) [18,19] model introduces extra d.o.f.’s, but here this results in traditional second order
equations in the time domain. Many researchers employed the GHM model to study ACLD
systems, e.g., Margaretha [20], Liao and Wang [21,22], Shi [23]. The advantage of GHM is its
complete compatibility with the finite element method (FEM). This means all useful and mature
features of the FEM can be retained.
ACLD structures are either modelled by the FEM or by distributed parameter method (DPM)

based on analytical equations. Rongong and Wright [9] used a DPM to study the axial and
transverse vibrations of a beam. They applied a Ritz method to derive the eigenfrequencies. Based
on an eight order differential equation, Shen [11] studied the controllability, observability and
stability of an ACLD beam system. Baz [24] proposed a stable boundary control strategy based
on analytical equations. Baz [25] numerically studied different control strategies based on
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analytical equations. All the models derived from DPM are small and exact enough, but
unfortunately DPM is limited only to simple structures such as ACLD beam structures. Since the
GHM model is completely compatible with the FEM, which is a powerful alternative used to
model ACLD structures. Van Nostrand [26] studied the transverse vibration of an ACLD beam
using finite elements derived with the Euler–Bernoulli theory. Veley and Rao studied ACLD
structures modelled with finite elements and the MSE model for the viscoelastic material. Friswell
and Inman [27] studied a PCLD beam using the FEM and the GHM model for the viscoelastic
material. They discussed a possible model reduction for the studied PCLD system. Shi [23] used
the FEM and the GHM model to study ACLD structures. Many research activities are limited to
numerical simulation because of the uncontrollability and unobservability of ACLD structures.
Zehn [28] proposed a practical way to investigate ACLD structures based on a commercial FE
software COSAR, a commercial controller design software MATLAB/SIMULINK and a
commercial modal analysis equipment of LMS.
This paper proposes an alternative and practical way to attenuate the vibration of structures. A

combined finite element analysis and an experimental study of a cantilever beam with a hybrid
damping treatment are presented. A viscoelastic layer is fixed on the beam with a PZT
constraining layer to obtain a hybrid damping. A GHM model is used to describe the frequency-
dependant behavior of the shear modulus. The cantilever beam with ACLD treatment is modelled
with FEM. The FE model is validated by modal experiments. Next, a new model reduction
procedure is proposed. The reduced model is much smaller in d.o.f. and is observable and
controllable. The paper describes further how a suitable damping controller is designed. Real-time
vibration control experiments are performed to validate the described procedure. The
experimental results clearly show the obtained damping performance of the controlled hybrid
system.

2. Analysis based on a finite element model

Fig. 1 shows a cantilever base beam partially covered ACLD consisting of a PZT layer on top
of a VEM layer. A FE model will be developed based on those assumptions: (1) The rotary inertia
is negligible. Shear deformations in the PZT and the base beam are negligible. (2) The transverse
displacement w is the same for all three layers. (3) Young’s modulus of the VEM is negligible as
compared to those of the beam and PZT materials. (4) Linear theories of elasticity, viscoelasticity,
and piezoelectricity are used. (5) There is perfect continuity at the interface and no slip occurs
between the layers. (6) The applied voltage is uniform along the PZT. (7) Density and thickness
are uniform over the beam.

ARTICLE IN PRESS

LL LR

L 

BEAM

PZT

VEM 

b 

hb

hv

hc

Fig. 1. Cantilever beam partially covered with an ACLD layer.
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2.1. Finite element modelling

The FE-model for the cantilever beam, partially covered with an ACLD, is divided into special
purpose ACLD elements and normal Euler–Bernouilli beam elements.

2.1.1. ACLD elements

Fig. 2 shows a two nodes ACLD element. The nodal displacements are given by

fU ðeÞg ¼ ½wðeÞ
i yðeÞi u

ðeÞ
ci u

ðeÞ
bi w

ðeÞ
j yðeÞj u

ðeÞ
cj u

ðeÞ
bj 	

T: ð1Þ

The transverse and the axial displacements of the base beam, and the axial displacement of the
PZT are expressed in the nodal displacements by shape functions:

w ¼ ½Nw	 fU ðeÞg; y ¼ ½Nw	0 fU ðeÞg; uc ¼ ½Nc	 fU ðeÞg; ub ¼ ½Nb	 fU ðeÞg; ð2Þ

where

½Nw	 ¼ ½1
 3x2 þ 2x3 ðx
 2x2 þ x3ÞLe 0 0 3x2 
 2x3 ð
x2 þ x3ÞLe 0 0	;

½Nc	 ¼ ½0 0 1
 x 0 0 0 x 0	; ½Nb	 ¼ ½0 0 0 1
 x 0 0 0 x	; ð3Þ

x ¼ x=Le is the local element co-ordinate.
From the kinematic relationships between the PZT layer and the base beam, it is easy to derive

the following relations [29]:

uv ¼
uc þ ub

2
þ

ðhc 
 hbÞ
4

@w

@x
;

g ¼
uc 
 ub

hv

þ
@w

@x

hc þ hb þ 2hv

2hv

� �
; ð4Þ

g and uv can also be expressed as functions of the nodal displacements by finite element shape
functions:

uv ¼ ½Nv	fU ðeÞg; g ¼ ½Ng	fU ðeÞg; ð5Þ

with

½Nv	 ¼
1

2
ð½Nc	 þ ½Nb	Þ þ

hc 
 hb

4
½Nw	0;

½Ng	 ¼
1

hv



6h�

Le

xþ
6h�

Le

x2 h�ð1
 4xþ 3x2Þ 1
 x x
 1
6h�

Le

x

6h�

Le

x2 h�ð
2xþ 3x2Þ x 
 x
� �

;

h� ¼ ðhc 
 hbÞ=4:
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Fig. 2. An ACLD element.
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For the base beam layer of an ACLD element, the potential and the kinetic energy are

1

2

Z Le

0

Ebbhb
@ub

@x

� �2

dx þ
1

2

Z Le

0

EbIb
@2w

@x2

� �2

dx

¼
1

2
fU ðeÞgT ½K ðeÞ

bu 	fU ðeÞg þ
1

2
fU ðeÞgT ½K ðeÞ

bw 	fU ðeÞg;

1

2

Z Le

0

rbhbb
@ub

@t

� �2

dx þ
1

2

Z Le

0

rbhbb
@w

@t

� �2

dx

¼
1

2
f ’UðeÞgT ½M ðeÞ

bu 	f ’UðeÞg þ
1

2
f ’UðeÞgT ½M ðeÞ

bw	f ’UðeÞg; ð6Þ

where

½K ðeÞ
bu 	 ¼ EbbhbLe

Z 1

0

½Nb	0T½Nb	0 dx; ½K ðeÞ
bw 	 ¼ EbIbLe

Z 1

0

½Nw	
00T½Nw	00 dx;

½M ðeÞ
bu 	 ¼ rbhbbLe

Z 1

0

½Nb	T½Nb	 dx; ½M ðeÞ
bw	 ¼ rbhbbLe

Z 1

0

½Nw	T½Nw	 dx:

For the PZT layer of an ACLD element, the constitutive equations of PZT materials for one-
dimensional structures with uni-axial loading can be written as [4]

e

D

" #
¼

SE
11 d31

d31 et33

" #
t

E

" #
; ð7Þ

the potential and the kinetic energy of the PZT layer are

1

2

Z Le

0

Ecbhc
@uc

@x

� �2

dx þ
1

2

Z Le

0

EcIc
@2w

@x2

� �2

dx

¼
1

2
fU ðeÞgT ½K ðeÞ

cu 	fU ðeÞg þ
1

2
fU ðeÞgT ½K ðeÞ

cw 	fU ðeÞg;

1

2

Z Le

0

rchcb
@uc

@t

� �2

dx þ
1

2

Z Le

0

rchcb
@w

@t
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dx

¼
1

2
f ’UðeÞgT ½M ðeÞ

cu 	f ’UðeÞg þ
1

2
f ’UðeÞgT½M ðeÞ

cw 	f ’UðeÞg; ð8Þ

where

½K ðeÞ
cu 	 ¼ EcbhcLe

Z 1

0

½Nc	
0T½Nc	0 dx; ½K ðeÞ

cw 	 ¼ EcIcLe

Z 1

0

½Nw	
00T½Nw	00 dx;

½M ðeÞ
cu 	 ¼ rchcbLe

Z 1

0

½Nc	T½Nc	 dx; ½M ðeÞ
cw 	 ¼ rchcbLe

Z 1

0

½Nw	T½Nw	 dx:
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If a virtual displacement field is applied, the virtual work done by the induced virtual strain in the
PZT layer is

dwc ¼
Z Le

0

Ecd31bvðtÞd
@uc

@x

� �
dx ¼ ½dU ðeÞ	Tff ðeÞ

c g ð9Þ

with the induced strain force in the element nodes

ff ðeÞ
c g ¼ Ecd31bvðtÞ ½0 0 
 1 0 0 0 1 0	T:

A GHM-model is adopted to model the VEM layer in an ACLD element. The GHM
model represents the shear modulus as a series of mini-oscillator terms in the Laplace
domain [19]:

s *GðsÞ ¼ GN 1þ
XN

k¼1

ak
s2 þ 2#zk #oks

s2 þ 2#zk #oks þ #o2
k

" #
: ð10Þ

The positive constants ak; #ok; #zk govern the shape of the modulus function over the complex
s-domain.
The potential and the kinetic energy of the VEM layer are

1

2

Z Le

0

Gvbhvg2 dx ¼
1

2
fU ðeÞgT ½K ðeÞ

vg 	 fU ðeÞg;

1

2

Z Le

0

rvhvb
@uv

@t

� �2

dx þ
1

2

Z Le

0

rvhvb
@w

@t

� �2

dx

¼
1

2
f ’UðeÞgT ½M ðeÞ

vu 	f ’UðeÞg þ
1

2
f ’UðeÞgT ½M ðeÞ

vw 	f ’UðeÞg; ð11Þ

where

K ðeÞ
vg ¼ GvbhvL

Z 1

0

½Ng	T½Ng	 dx;

½M ðeÞ
vu 	 ¼ rvhvbLe

Z 1

0

½Nv	T½Nv	 dx; ½M ðeÞ
vw 	 ¼ rvhvbLe

Z 1

0

½Nw	T½Nw	 dx:

2.1.2. Euler–Bernouilli beam elements

Each of the two nodes of plain beam elements has 3 d.o.f.: the axial and transverse
displacements and a rotation. The stiffness and mass matrices of the normal beam elements hence
have a dimension of 6� 6: The formulation of the matrices is similar to Eqs. (6).

2.1.3. Load vector

If a virtual displacement field is applied on the beam, the virtual work done by an external
disturbance force is

dwd ¼
Z Le

0

fdðx; tÞ@wðx; tÞ dx ¼ ½dU ðeÞ	Tffdg: ð12Þ
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2.1.4. Dynamic equations of a cantilever beam with an ACLD layer

Application of the principle of virtual work and using the above-derived expressions for the
potential and kinetic energies lead to the element equilibrium equation. For the ACLD elements,
the dynamic equilibrium equations can be written as

½M ðeÞ	f .UðeÞg þ ½K ðeÞ
E 	fU ðeÞg þ ½K ðeÞ

vg 	fU ðeÞg ¼ ff ðeÞ
c g; ð13Þ

where

½M ðeÞ	 ¼ ½M ðeÞ
bu 	 þ ½M ðeÞ

bw	 þ ½M ðeÞ
cu 	 þ ½M ðeÞ

cw 	 þ ½M ðeÞ
vu 	 þ ½M ðeÞ

vw 	;

½K ðeÞ
E 	 ¼ ½K ðeÞ

bu 	 þ ½K ðeÞ
bw 	 þ ½K ðeÞ

cu 	 þ ½K ðeÞ
cw 	:

Eq. (13) is non-linear because Gv in ½K ðeÞ
vg 	 is not a constant. In Laplace domain the initial

conditions have been assumed to be zero, so a column matrix of dissipation co-ordinates are
introduced [19]:

f #ZkðsÞg ¼
#o2

k

s2 þ 2#xk #oks þ #o2
k

fU ðeÞðsÞg: ð14Þ

Because a GHM model is used for the VEM, Eq. (13) can now be written as follows:

½ %MðeÞ	f .qðeÞg þ ½ %DðeÞ	f ’qðeÞg þ ½ %KðeÞ	fqðeÞg ¼ f %fðeÞg; ð15Þ

where

%MðeÞ ¼

M ðeÞ 0 ? 0

0 a1
1

#o2
1

L 0 ^

^ 0 & 0

0 ? 0 aN
1

#o2
N

L

2
666666664

3
777777775
; %DðeÞ ¼

0 0 ? 0

0 a1
2#x1
#o1

L 0 ^

^ 0 & 0

0 ? 0 aN
2#xN

#oN

L

2
666666664

3
777777775
;

%KðeÞ ¼

K
ðeÞ
E þ K ðeÞ

vg ð1þ
PN

k¼1 akÞ 
a1R ? 
aNR


a1RT a1L 0 0

^ 0 & 0


aNRT 0 0 aNL

2
66664

3
77775; fqðeÞg ¼

U ðeÞ

Z1

^

ZN

8>>><
>>>:

9>>>=
>>>;
; f %f ðeÞg ¼

f ðeÞ
c

0

^

0

8>>><
>>>:

9>>>=
>>>;
;

Zk ¼ RT
v
#Zk; R ¼ RvL; L ¼ GNLv; ½K ðeÞ

vg 	 ¼ GN½ #KðeÞ
vg 	; ½ #K

ðeÞ
vg 	 ¼ RvLvR

T
v ; Lv is a diagonal matrix of

the non-zero (necessarily positive) eigenvalues of matrix #KðeÞ
vg ; and the corresponding

orthonormalized eigenvectors form the columns of the matrix Rv:
Eq. (15) is a traditional second-order form. For the cantilever beam with an ACLD layer, the

following global dynamic equation can be derived through standard FEM assembly procedures:

½M	f .qg þ ½D	f ’qg þ ½K 	fqg ¼ ½F 	: ð16Þ
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2.2. Model reduction process

The dynamic equation (16) derived has an excess of d.o.f.’s from a control point of view.
Moreover, it is unobservable and uncontrollable [30,31]. Model reduction is required.
Model reduction methods are developed from two different disciplines [32]: finite element (FE)

analysis [33,34] and large-system control theories [30,35]. The former could reduce system size, but
it could not guarantee observability and controllability because the model reduction takes place
entirely in the physical space. Observability and controllability are thus beyond consideration.
The latter could guarantee observability and controllability, but unsuitable for flexile structures
like a beam with an ACLD layer. The FE model of the ACLD system has too many d.o.f.’s for
adequate control, especially after the introduction of dissipation co-ordinates in Eqs. (14) and
(15). What is more, this large system is uncontrollable and unobservable. It is impossible to
directly compute the full orthogonal bases for the eigenspace required in intermediate steps in the
state space, even by Schur decomposition [34].
A new model reduction procedure is proposed. An iterative dynamic condensation is performed

in the physical space, and Guyan condensation is taken as an initial iteration approximation. This
results in a reduced order system of suitable size, but still unobservable and uncontrollable. A
robust model reduction method is employed in the state space afterwards. Now the system size is
reduced, and stability, controllability and observability of the reduced order model (ROM) are
assured.
To study observability and controllability of the proposed model reduction procedure

conveniently, controllability gramian Wc and the observability gramian Wo are introduced.
Given the continuous-time state-space model

’x ¼ Ax þ Bu;

y ¼ Cx þ Du; ð17Þ

Wc and Wo are defined by

Wc ¼
Z

N

0

eAtBBTeATt dt; Wo ¼
Z

N

0

eATtCTCeAt dt; ð18Þ

Wc and Wo can be obtained by solving Lyapunove equations

AWc þ WcA
T þ BBT ¼ 0; ATWo þ WoA þ CTC ¼ 0: ð19Þ

The system is controllable if Wc is full rank; it is observable if Wo is full rank [32]. The numerical
condition of Wc and Wo is a measure of system’s controllability and observability.

2.2.1. Model reduction in the physical space
The total number of d.o.f.’s in Eq. (16) is assumed to be n: It can be divided into master d.o.f.’s

(the conserved d.o.f.’s) and slave d.o.f.’s (the removed d.o.f.’s). Eq. (16) can be written as

Mmm Mms

Msm Mss

" #
.XmðtÞ
.XsðtÞ

( )
þ

Dmm Dms

Dsm Dss

" #
’XmðtÞ
’XsðtÞ

( )

þ
Kmm Kms

Ksm Kss

" #
XmðtÞ

XsðtÞ

( )
¼

FmðtÞ

FsðtÞ

" #
: ð20Þ

ARTICLE IN PRESS

Y. Shi et al. / Journal of Sound and Vibration 278 (2004) 343–363350



If a system reduction matrix RARs�m is defined, which relates the master d.o.f.’s with the slave
d.o.f.’s, then after i iterations, the reduced-order system equation [36] is

M
ðiÞ
R

.XmðtÞ þ D
ðiÞ
R

’XmðtÞ þ K
ðiÞ
R XmðtÞ ¼ F

ðiÞ
R ðtÞ; ð21Þ

where

M
ðiÞ
R ¼ Mmm þ ðRðiÞÞTMsm þ MmsR

ðiÞ þ ðRðiÞÞTMssR
ðiÞ;

D
ðiÞ
R ¼ Dmm þ ðRðiÞÞTDsm þ DmsR

ðiÞ þ ðRðiÞÞTDssR
ðiÞ;

K
ðiÞ
R ¼ Kmm þ ðRðiÞÞTKsm þ KmsR

ðiÞ þ ðRðiÞÞTKssR
ðiÞ; F

ðiÞ
R ðtÞ ¼ FmðtÞ þ ðRðiÞÞTFs;

Rðiþ1Þ ¼ 
K
1
ss ½MssR

ðiÞðM ðiÞ
R Þ
1K

ðiÞ
R 
 Ksm	:

Guyan [33] condensation is taken as an initial iteration approximation. So Rð0Þ ¼ 
K
1
ss Ksm:

In this reduction, two issues must be addressed: selection of the master d.o.f.’s and their
number. Levy [37] gave guidance on choosing master d.o.f.’s. He recommended the choice of
d.o.f.’s with large displacements in the useful band or large mass components. Ramsden and
Stocker [38] selected the master d.o.f.’s associated with large mass concentrations and those
reasonably flexible with respect to other mass concentrations. Downs [39] insisted master d.o.f.’s
must be translations instead of rotations. In complicated assemblies, master d.o.f.’s were to be
found in the most flexible regions. Shah and Raymund [40] proposed an eliminated algorithm,
such that the ratio kii=mii of the diagonal terms of K and M corresponding to the removed slave
d.o.f.’s is a maximum. The number of interested modals determines the number of master d.o.f.’s.
Levy [37] advised that the ratio between the number of the master d.o.f.’s and the number of the
interested modals should be 3.5. Ramsden and Stocker [38] thought that the ratio should be a
value between 2 and 3. Suarez and Singh [41] proposed a 1.40 ratio. Those conflicting theories
make it difficult to resolve the issue of master d.o.f.’s selection and their number. Different
problems will require different solutions.

2.2.2. Model reduction in the state space
The reduced-order system equation (21) is much smaller than the original system equation (16),

but it is unobservable and uncontrollable in the state space. A robust model reduction follows in
the state space. Generally speaking, the robust model reduction method has the following special
features: (1) It bypasses the ill-conditioned balanced transformation. (2) It employs Schur
decomposition to compute robustly the orthogonal bases for eigenspace required in intermediate
steps. (3) It has a HN-norm error bound. The infinity norm of the relative error or the absolute
error of the ROM is bounded by a precomputable positive real number for all frequencies.
Eq. (21) can be transformed into the state-space form ðA;B;C;DÞ with 2m d.o.f.’s. Its transfer

function is GðsÞ ¼ D þ CðIs 
 AÞ
1B: It can be reduced to a system ð #A; #B; #C; #DÞ with k ðko2mÞ
d.o.f.’s. The detailed procedure can be found in Ref. [30].
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2.3. Controller design

For the final ROM ð #A; #B; #C; #DÞ; the linear-quadratic-Gaussian (LQG) controller [36] is

’#x ¼ ½ #A 
 #BK 
 L #C þ L #DK	 #x þ Ly; #u ¼ 
K #x; ð22Þ

where K ¼ R
1 #BTP; L ¼ P0
#CTR
1

0 ; P and P0 can be solved from the following two Riccati
equations:

#ATP þ P #A 
 P #BR
1 #BTP þ Q ¼ 0; #ATP0 þ P0
#A 
 P0

#CTR
1
0 CP0 þ FQ0F

T ¼ 0; ð23Þ

where P is the semi-positive-definite weighting matrices on the states, Q is the positive-definite
weighting matrices on the control inputs. P0 and Q0 are the input noise intensity and measurement
noise intensity. Vector F denotes the disturbance position. y is the measurable output of the
system ð #A; #B; #C; #DÞ:

3. Numerical simulation and experimental study

In this section, the numerical simulation of a real cantilever beam with an ACLD layer is
performed based on the above analysis, next modal experiments are used to verify the simulation.
Finally a real-time control system is designed based on the verified model.

3.1. Numerical simulation

The dimensions of the real cantilever beam with an ACLD layer in Fig. 1 are listed in Table 1.
The PZT and VEM are provided separately by Haiying corporation in Wuxi, China, and the
institute of aerospace technology in Beijing, China. The disturbance is exerted at the free tip of the
cantilever beam; the transverse displacement responses are measured there as well.

3.1.1. FEM analysis

In Fig. 1, the left part of plain beam (LL) is divided into 3 normal Euler–Bernouilli beam
elements, the right part (LR) into 6 and the middle part into 6 ACLD elements. The modal
frequencies (Hz) and damping ratios of the first four modes are given in Table 2.
The modal experiment will be discussed in more detail later. From Table 2, the following

conclusion can be drawn: (1) The frequencies calculated with FE model agree well with those from
experiments. It shows that the mathematical model derived by FEM is accurate enough for
designing a controller. (2) The frequencies from FEM are only a little bit higher than those
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Table 1

System parameters

L 0:400 m hb 0:003 m Eb 5� 1010 N=m2 a2 4:1977� 101 #x1 3.0787

LL 0:093 m hv 0:001 m Ec 6:67� 1010 N=m2 a3 3:5174� 101 #x2 1:4288� 102

LR 0:202 m rc 7450 kg=m3
d31 
1.85� 10
10 m/V #o1 6:6169� 106 #x3 6:1785� 102

b 0:014 m rv 789:5 kg=m3
GN 3:8870� 104 Pa #o2 3:2854� 104

hc 0:0007 m rb 2700 kg=m3 a1 2:3263� 104 #o3 4:7515� 104
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obtained from experiments, this is reasonable. (3) The difference between damping ratios from
FEM and those from experiments is somewhat bigger, but remains acceptable (damping ratios
cannot be measured accurately).

3.1.2. Model reduction
The above system derived by FEM has 106 d.o.f.’s in the physical space and 212 d.o.f.’s in the

state space. The system has too many degrees for control design. Furthermore, it is unobservable
and uncontrollable. It is necessary to perform model reduction and make the system observable
and controllable before a controller can be designed.
According to Section 2.2.1, 8 transverse displacements of the 9 Euler–Bernouilli beam elements,

7 transverse displacements of base beam layer, 7 transverse and 7 axial displacements of the PZT
layer in the 6 ACLD elements are chosen as master d.o.f.’s. All other d.o.f.’s including the
dissipation d.o.f.’s resulted from GHMmodel, the rotations and axial displacements of base beam
become slave d.o.f.’s. By using Eqs. (20) and (21), the system is reduced from 106 d.o.f.’s to 29
d.o.f.’s in the physical space. By using the procedure mentioned in Section 2.2.2, the system is
further reduced from 58 d.o.f.’s to 11 d.o.f.’s in the state space.
The final ROM becomes 11� 11 in the state space after the model reduction firstly in the

physical space and then in the state space. The first 4 frequencies of experimental model (EM), the
original full order model (FOM) and ROM are listed in Table 3. The relative errors are taken
between FOM and ROM. According to Section 2, the conditions of Wc and Wo are good measure
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Table 2

FEM and modal experimental results

Mode FEM results Experimental results Relative errors

(%)

f1 13.0118 Hz 12.71 Hz 2.3745

Z1 1.6772% 1.52% 10.3421

f2 73.7874 Hz 73.64 Hz 0.20016

Z2 1.1527% 1.41% 18.2482

f3 212.2858 Hz 211.43 Hz 0.4048

Z3 1.6479% 1.61% 2.3540

f4 415.6184 Hz 413.16 Hz 0.5950

Z4 0.9234% 0.82% 12.6098

Table 3

The first 4 frequencies of EM, FOM and ROM

Mode EM (Hz) FOM (Hz) ROM (Hz) Relative errors (%)

1 12.71 13.0118 13.0162 0.03382

2 73.64 73.7874 73.9063 0.1610

3 211.43 212.2858 214.1771 0.8909

4 413.16 415.6184 437.2304 5.199
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of controllability and observability. The conditions of Wc and Wo of the FOM and ROM are
listed in Table 4.
It can be seen from Table 3 that (1) the final ROM agrees well with the original FOM in

low-frequency range. The relative errors of the first three modes between FOM and ROM are less
than 1%; (2) the frequencies of FOM are smaller than those of ROM; (3) the relative errors
increase with the mode number.
It can be seen from Table 4 that (1) the final ROM is far smaller than the original FOM; (2) the

ROM is both controllable and observable.
When a voltage is applied to the PZT, the Bode graph between the PZT layer and the free tip of

the cantilever beam is shown in Fig. 3. When a disturbance is exerted at the free tip of the
cantilever beam, the Bode graph is shown in Fig. 4.
It is shown in Figs. 3 and 4 that the final ROM agrees well with the original FOM in

low-frequency range.
When a unit impulse voltage is exerted on the PZT, the transverse displacement response

at the free tip of the cantilever beam is shown in Fig. 5. When a unit impulse disturbance
is exerted at the free tip of the cantilever beam, the transverse displacement response is
shown in Fig. 6.

ARTICLE IN PRESS

Table 4

The condition of Wc and Wo of the FOM and the FROM

Size ðWcÞ Rank ðWcÞ Size ðWoÞ Rank ðWoÞ

FOM 212 84 212 78

ROM 11 11 11 11
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Fig. 3. Bode graph between the PZT layer and the free tip of the cantilever beam (applied voltage).
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3.1.3. Controller design
The controllable and observable ROM obtained in above section accurately represents the

FOM of the ACLD system. A ROM-based controller is designed according Section 2.3. When a
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Fig. 4. Bode graph between the PZT layer and the free tip of the cantilever beam (disturbance force).
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disturbance is exerted at the free tip of the cantilever beam and a control voltage is applied to
PZT, the frequency response function (FRF) is shown in Fig. 7.
It is shown in Fig. 7 that the control effect is obvious in low-frequency range, especially for the

first 2 modes.
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The above controller is 11� 11 in the state space. The model reduction of the above controller
is also performed because if the controller small then during the course of real-time control it is
better. The controller is reduced to 6� 6 by using the procedure mentioned in Section 2.2.2. The
input of the controller is the output of the system, namely the sensor, while the output of the
controller is the input of the system, namely the actuator. Its Bode graph is shown in Fig. 8. It is
clear that the performance of the controller is not reduced after model reduction.

3.2. Experimental study

In Section 3.1, a 11� 11 ROM and a 6� 6 reduced controller are prepared. In this section,
modal analysis is performed to verify the FEM model and a real-time control system is set to test
the control effect.

3.2.1. Experimental modal analysis
The experimental setup for the modal analysis is shown in Fig. 9. E1 is the force sensor at the

excited point. S1–S5 are 5 PCB acceleration sensors. Other instruments include 1 HP35605
analyzer, 1 CADA-X workstation, 1 B&K 900803 charge amplifier and 5 PCB charge amplifiers.
The FRF between E1 and S5 is shown in Fig. 10. The first 4 modal frequencies are listed in

Table 3. It is shown in Fig. 10 and Table 3 that the mathematical model derived by FEM is
accurate enough to design a suitable controller for the experimental cantilever beam.

3.2.2. Real-time active control study
In Section 3.1.3, a reduced 6� 6 controller is derived. The weighting matrices Q and R are

5� 106 � I and 1� 10
4; respectively, I is the unit matrix with suitable size. The input noise
intensity Q0 and the measurement noise intensity R0 are 1� 10
3 and 1� 10
10; respectively. It
can be transformed to a discrete form which is suitable to a PC real-time control system. The
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experimental setup for the real-time control study is shown in Fig. 11. The main instruments
include a IPC5472 A/D & D/A card, a PC, a NH-Z 600 power amplifier, a non-contact current
vortex sensor (CVS) at the free tip of the cantilever beam, and a weight suspended at the free tip of
the cantilever beam by a very light, thin cord.
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Fig. 10. The FRF between E1 and S5.
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Fig. 9. Experimental setup for the modal analysis.
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In this real-time control experiment, the transverse displacement at the free tip of the cantilever
beam is measured by the CVS. The weight is suspended at the free tip of the cantilever beam by a
very light, thin cord. The cord is cut suddenly. This is used to simulate an impulse disturbance at
the free tip. A voltage output from the controller is applied to the PZT to attenuate the vibration.
This procedure was repeated many times, always yielding similar results.
A typical measured transverse displacement response at the free tip of the uncontrolled

cantilever beam is shown in Fig. 12(a). The corresponding controlled responses is shown in
Fig. 12(b). From this pair of figures, it is obvious that the impulse responses are attenuated after
the control voltage computed by the designed controller is applied to the PZT.
The responses in Figs. 12(a) and (b) are transformed into the frequency domain by a FFT. The

corresponding power spectral density (PSD) is shown in Fig. 13. It clearly shows that the first 2
frequencies are attenuated. The PSD at the first frequency is reduced from 248.0656 to 61.0946.
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Fig. 12. The measured impulse response (in voltage) of the (a) uncontrolled system, (b) controlled system.
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The controlled PSD at the first frequency is 24.6284% of the uncontrolled. The PSD at the second
frequency is reduced from 55.1103 to 35.1002. The controlled PSD at the second frequency is
63.6908% of the uncontrolled.

4. Conclusion

It has been shown in this paper that it is possible to overcome vibration control problems due to
model size and lack of controllability and observability. The proposed method first derives a finite
element model of a structure with hybrid damping treatment and next uses a reduction method to
obtain a small size, controllable and observable model. It has been shown that it is possible to
design a controller based on the reduced model.
Finally, experimental validation by a real-time control system was set up. The controlled and

uncontrolled impulse responses at the free tip of the cantilever beam with ACLD treatment were
compared both in time domain and frequency domain. The results have clearly shown the effect of
the control.
The procedure proposed in this paper can, in principle, be applied to other more complex

structures. Future research will go in this direction.
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Appendix. Nomenclature

b width of the ACLD beam
D electrical displacement
d31 piezoelectric constant
½D	 damping matrix
Ec;b Young’s modulus of the PZT layer and the base beam, respectively
E electrical field
½F 	 general force including the effect of external disturbances and the PZT layer
f ðeÞ
c general force of the PZT layer

f
ðeÞ

d general force of external disturbances
GN equilibrium value of the shear modulus
Gv shear modulus of the VEM in the time domain
hc;v;b thickness of the PZT layer, the VEM layer and the base beam, respectively
Ic;b moment of inertia of the PZT layer and the base beam, respectively
½K 	 stiffness matrix
Le length of the ACLD elements
L length of the ACLD part
LL length of the left part of the ACLD beam
LR length of the right part of the ACLD beam
½M	 mass matrix
Nw;c;b;v;r shape function of the transverse displacement, the axial displacement of the PZT

layer, the axial displacement of the base beam, the axial displacement of the VEM
layer, and the shear strain of the VEM layer, respectively

SE
11 elastic compliance constant

s *GðSÞ complex modulus of the VEM layer
U ðeÞ local nodal displacement column
uc;b axial displacement of the PZT layer and the base beam, respectively
V ðtÞ applied voltage on the PZT layer
w transverse displacement
#zkðsÞ dissipation co-ordination
ak; #ok; #zk positive constants of the GHM model
g shear strain of the VEM layer
e mechanical strain in the axial direction
et33 dielectric constant
y rotation angle
rc;v;b density of the PZT layer, the VEM layer and the base beam, respectively
si Hankel singular values of the system
t mechanical stress in the axial direction

Superscript
0 partial differentiation with respect to x

Subscripts

b index for the base beam
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c index for the PZT constraining layer
i; j index for the element nodes i; j
m index for master d.o.f.’s
s index for the slave d.o.f.’s
R index for the reduced order system
u axial displacement
v viscoelastic layer
w transverse displacement
g shear strain of VEM layer
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